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In vitro and in vivo performance of circVec, a vector-based 
circular RNA expression platform for enhanced gene therapy
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Introduction 

Circular RNA (circRNA) is a novel class of endogenously expressed RNA. CircRNAs 
are generated by a non-linear splicing event, known as backsplicing, where an 
upstream splice acceptor attacks a downstream splice donor. circRNAs are resistant 
to exonucleolytic decay, which results in increased intra-cellular stability and 
persistence compared to mRNA. We have developed a circRNA-based expression 
platform, circVec, which utilizes this natural stability advantage to improve vector-
based protein expression.
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1. Effective biogenesis through screening and 
optimization of endogenous circRNA loci

Figure 1: Optimization of flanking inverted repeats (IRs). A) IRs from highly expressed circRNAs, 
stratified by distance to backsplicing sites, were identified by bioinformatic analysis of publicly 
available datasets, where circRNA specific reads were compared to linear spliced reads. B) 
Schematic representation of wild-type and optimized (IR1+IR2) circRNA expression cassettes. C) 
Comparing circRNA levels from wt, IR1, and the improved shortened IR2 design relative to the 
mRNA-based expression 48 hours after transfection.
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2. Genetic cassette design and choice of IRES are 
critical for circRNA-driven protein expression level

Figure 2: Choice of IRES and IRES/ORF composition impact circRNA expression: A) Schematic 
representation of circRNA with IRES and ORF. B) Protein expression from twelve different IRES/ORF 
designs (D1-D12) was assessed by western blot. C) Protein expression from twelve different IRES 
elements in the D4 cassette design was assessed by western blotting using antibodies specific to 
the ORF and β-actin (loading control). 
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3. circRNA stability confers enhanced protein 
expression

Figure 3: Superior circRNA stability facilitates circRNA accumulation and prolonged protein 
expression. A) Newly synthesized RNA was labelled with nucleotide analogues for 8 hours and the 
durability of labelled RNA was quantified over time by qRT-PCR. Half-life RNA estimates were 
inferred from the nascent fraction (newly synthesised labelled RNA as in(A)) relative to total RNA 
assuming steady-state. B) Simulation of expected expression profile based on empirical half-life 
estimates from (A). C) Protein yield measured by relative luminescence at indicated timepoints after 
transfection of four different circVec generations and the mRNA counterpart, in C2C12 cells.
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4. Bimodal circVec remove-&-replace design successfully depletes 
pathogenic transcripts while expressing functional proteins
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Figure 4: circVec remove’&’replace technology successfully depletes pathogenic AAT variants while replenishing 
functional AAT. A) Schematic of remove’&’replace circVec concept. B) Schematic of circVec cassette designs. C) Western 
blot on protein from HEK293T cells co-transfected with tagged circVec and mutant AAT reporters (MT_AAT), as indicated, 
using FLAG and MYC antibodies, respectively, and a loading control (β-actin). D) Relative wildtype AAT expression from 
circVec (left side) and mutant AAT (right side); n=2
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6. 2-4x improvement of circVec performance by proprietary 
codon optimization approach
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Figure 6: Codon optimization of circVec ORF: A) Schematic flow of algorithm development based on Firefly luciferase 
expression. B-C) Validation of codon optimization model using AAT ORF optimized by different algorithms showing 
superior performance of Circio algorithm improving yield 2-4x over the wild-type codon composition.
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5. CircVec achieves up to 15-fold higher protein expression 
than mRNA-based vectors in vivo

HD: 20 ug pDNA in PBS
MD: 5 ug pDNA in PBS
LD: 1 ug pDNA in PBS
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Figure 5: In vivo performance of circVec: A) schematic representation of in vivo study: Intramuscular injection of either 
circRNA (right hindleg) or mRNA (left hindleg)-encoding plasmids expressing firefly luciferase using three different doses: 
20 (HD), 5 (MD), or 1 ug (LD) followed by continuous measurement of bioluminescence with IVIS. B) IVIS scans obtained at 
different timepoints after intramuscular injection of 1ug DNA shown for two independent studies. C) Quantified 
bioluminescence for the three dose groups over time. D)  Inferred fold-change between circRNA and mRNA-based 
luminescence over time by MCMC modelling using the denoted growth-decay formula
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o Superior stability leads to accumulation of circRNA resulting in higher and prolonged protein expression vs. mRNA 
o circVec achieves up to 15x enhanced reporter signal in vivo compared to standard vector-based mRNA expression 
o Choice and composition of IR and IRES/ORF design is critical for high yield expression
o circVec remove-&-replace design effectively depletes pathogenic mRNA and rescues wt protein expression
o Further circVec performance enhancement achieved by machine learning codon optimization approach

Conclusions
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